Uma comparação entre ANOVA e modelos lineares mistos para análise de dados de tempo de resposta

Mahayana Cristina Godoy,
Marcus Alexandre Nunes

Resumo

Neste artigo, argumentamos que modelos lineares mistos (MLMs) são mais adequados que Análise de Variância (ANOVA) para lidar com dados de tempo de reação. Com a análise de um conjunto de dados simulados, mostramos que MLMs têm menor chance de incorrer em erros do Tipo I por permitir a inclusão de mais de um efeito aleatório (geralmente participantes e itens) em um único modelo. Também apresentamos uma introdução à implementação e análise de dados por meio de MLMs usando R e sugerimos materiais adicionais para os pesquisadores que desejarem fazer esse tipo de análise. Nosso principal objetivo é fomentar o uso de MLMs na comunidade psicolinguística brasileira.

Referências

BAAYEN, R. H.; DAVIDSON, D. J.; BATES, D. M. Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, v. 59, n. 4, p. 390–412, 2008.

BARR, D. J. et al. Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, v. 68, n. 3, p. 255–278, abr. 2013.

BATES, D. et al. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, v. 67, n. 1, p. 1–48, 2015.

BOLKER, B. M. et al. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS. Methods in Ecology and Evolution, v. 4, n. 6, p. 501–512, abr. 2013.

CLARK, H. H. The Language-as-Fixed-Effect Fallacy: A Critique of Language Statistics in Psychological Research. Journal of Verbal Learning and Verbal Behavior, v. 12, p. 335–359, 1973.

COSTA, I. DE O. Verbos meteorológicos no plural em orações relativas do português brasileiro: sintaxe e processamento. 2013. Dissertação (Mestrado em Estudos da Linguagem). Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2013.

DAVENPORT, J. M.; WEBSTER, J. T. A comparison of some approximate F-tests. Technometrics, v. 15, p. 779–789, 1973.

DEBRUINE, L. M.; BARR, D. J. Understanding mixed effects models through data simulation PsyArXiv, jun. 2019. Disponível em: . Acesso em 9 jun. 2020.

GARCIA, G. D. When lexical statistics and the grammar conflict: Learning and repairing weight effects on stress. Language 95(4), p. 612-641, 2019.

GODOY, M. C. Introdução aos modelos lineares mistos para os estudos da linguagem. PsyArXiv, 2019. Disponível em < https://doi.org/10.17605/OSF.IO/9T8UR>. Acesso em 9 jun. 2020.

GODOY, M. C. et al. O papel do conhecimento de eventos no processamento de sentenças isoladas. Letrônica, v. 10, n. 2, p. 538–554, 2017.

KRUSCHKE, J. K., LIDDEL, T. M. Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 25(1), p. 155–177, 2018.

KUTNER, M. et al. Applied Linear Statistical Models. 5. ed. New York: McGraw-Hill/Irwin, 2004.

LOPES, S. R. C.; NUNES, M. A. Long memory analysis in DNA sequences. Physica A: Statistical Mechanics and its Applications, v. 361, n. 2, p. 569–588, mar. 2006.

MORETTIN, P. A.; BUSSAB, W. DE O. Estatística básica. São Paulo: Saraiva, 2004.

OUSHIRO, L. Introdução à Estatística para Linguistas. Zenodo, 2017. Disponível em https://zenodo.org/record/822070#.Xo9qHdNKjOQ. Acesso em 9 jun. 2020.

RAAIJMAKERS, J. G. W. A Further Look at the "Language-as-Fixed-Effect Fallacy". Canadian Journal of Experimental Psychology, v. 57, n. 3, p. 141–151, 2003.

RAAIJMAKERS, J. G. W.; SCHRIJNEMAKERS, J. M. C.; GREMMEN, F. How to Deal with "The Language-as-Fixed-Effect Fallacy": Common Misconceptions and Alternative Solutions. Journal of Memory and Language, v. 41, p. 416–426, 1999.

SMITH, J. E. K. The assuming-will-make-it-so fallacy. Journal of Verbal Learning and Verbal Behavior, v. 3, p. 262–263, 1976.

WIKE, E. L.; CHURCH, J. D. Comments on Clark’s "The language-as-fixed-effect fallacy". Journal of Verbal Learning and Verbal Behavior, v. 15, n. 3, p. 249–255, 1976.

WINTER, B. Linear models and linear mixed effects models in R with linguistic applications. CoRR, v. abs/1308.5499, 2013.

WINTER, B. Statistics for Linguists: An Introduction Using R. New York: Routledge 2019.