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Effects of speaking style on 
the shape of fundamental 
frequency distributions  

The present study has two main goals. The first is to describe the effects 

of three speaking styles (spontaneous interview, sentence reading and 

word list reading) on statistical estimators of fundamental frequency (f0) 

variability (mean, standard deviation, skewness and kurtosis) in five fe-

male and five male speakers of Brazilian Portuguese (BP). Most f0 con-

tours of word reading are bimodal. Analysis of their time-normalized 

contours suggests this is caused by the time-compressed realization of 

fast transitions from low to high or high to low tones aligned with 

stressed syllables. Considering only unimodal distributions, results show 

that there are no statistically significant effects in the male data for any 

of the four variability estimators. Effects show up in female data. Spon-

taneous style has statistically significant higher mean, SD and skewness 

than read speech. Findings in the previous literature indicate the reverse 

pattern, though, for languages other than BP. The second goal of the 

study is to characterize the statistical properties of f0 distributions be-

yond mean and SD. Results confirm previous observations that most f0 

distributions have positive skewness, are left-tailed and have kurtosis 

values that deviate significantly from the normal because of large devia-

tions from the central or modal value. A distribution fitting procedure 

tested six distributions. The asymmetric Burr type XII distribution 

emerges as the one that best fits the data in the corpus. Results show 

that two of the parameters that determine its shape correlate well with 

the empirical f0 distribution values of SD and skewness. Important ef-

fects of speaking style on f0 seen in female speakers can be reproduced 

by combinations of the Burr distributions’ parameters.  
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Este estudo tem dois objetivos principais. O primeiro é descrever o efeito de 

três estilos de elocução (entrevista espontânea, leitura de frases e leitura de 

palavras) sobre estimadores da variabilidade de f0 e também sobre o formato 

dos histogramas de f0 de cinco falantes femininos e masculinos do portu-

guês brasileiro (PB). A maioria dos contornos de leitura de palavras é bimo-

dal. A análise de contornos normalizados temporalmente sugere que a bi-

modalidade é causada por transições rápidas entre tons altos e baixos. Os 

resultados das distribuições unimodais mostram que a variável estilo só 

causa efeitos significativos nos dados das mulheres: o estilo espontâneo 

apresenta valores maiores de média, desvio-padrão e assimetria em compa-

ração ao estilo leitura de frases. O segundo objetivo do estudo é caracterizar 

as propriedades estatísticas de f0 para além da média e do desvio-padrão. 

Nossos resultados confirmam observações anteriores ao mostrar que distri-

buições de f0 no geral têm assimetria positiva e valores de curtose que exce-

dem o que seria esperado para a distribuição normal. Um procedimento 

para ajuste de distribuições testou seis distribuições de probabilidade teóri-

cas. A distribuição assimétrica Burr tipo XII foi a que teve o melhor ajuste 

em relação aos dados estudados. Os dois parâmetros que descrevem o for-

mato da distribuição têm boa correlação com os valores de desvio-padrão e 

assimetria das distribuições empíricas. Os efeitos do estilo de elocução so-

bre as distribuições de f0 das mulheres podem ser reproduzidos por combi-

nações dos parêmetros da distribuição Burr. 

Prosody. Speaking Style. Fundamental Frequency.  

Statistical Distributions.

Prosódia. Estilos de elocução. Frequência fundamental.  

Distribuições estatísticas. 

Introduction 
 

In this article we deal with two lines of research that do not cross paths regularly, at least not as we 

investigate them here. The first is the study of the effects of speaking style on f0 and the second is 

the statistical description and modeling of f0 distributions. 
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Research on speaking styles revolves around the task of describing or characterizing the many 

landmarks in a continuum that goes from what can be called spontaneous speech to speech read from 

previously prepared texts in laboratory conditions. In between these two, it is possible to identify styles 

that are defined in relation to the content and function of the spoken content, such as news broadcasts, 

sports narration, theatrical speech and many others. Different dimensions of language and speech are 

investigated in relation to speaking styles: linguistic stress, speaking rate, vowel reduction, content vs. 

function words and voice quality, to name a few - see specially Llisterri (1992) for a systematic review 

of research strategies and results that have accrued around the subject. 

Prosodic correlates are consistently researched in regard to the effects of speaking styles; see 

Llisterri (1992, p. 13–14) for a comprehensive list of suprasegmental acoustic correlates that have 

already been investigated. Here, we concentrate on the effects of speaking style on overall f0 varia-

bility. The most common research strategy has been to determine how spontaneous and read speech 

styles affect a number of statistical descriptors of f0 distribution, mainly f0 mean and standard devi-

ation. At least six articles systematically review results on this theme (ESKÉNAZI, 1993; HOLLIEN; 

HOLLIEN; DE JONG, 1997; JESSEN, 2009; KARLSSON et al., 1998; KÜNZEL, 1997; LLISTERRI, 1992). A 

more recent article (ARANTES; LINHARES, 2017) compares 26 studies mentioned in the review arti-

cles listed. In most studies, read speech shows greater f0 mean than spontaneous speech, although 

not all studies use the same definition for the latter style. A great number of results show that the 

two styles do not differ in f0 standard deviation; studies that show a difference are divided in almost 

equal numbers between those pointing to spontaneous speech having grater standard deviation and 

those showing the reverse. Only a few studies report results of inferential statistical tests, and most 

numerical averages for both mean and standard deviation values presented are close; so, even if 

differences are statistically significant, the effect sizes are likely to be small. In terms of language 

diversity, the reviewed studies are dominated by English; and other languages also present in the 

reviewed papers are Dutch, French, German and Swedish, but in lesser numbers. 

Besides reviewing previous work, Arantes and Linhares (2017) present original results from a 

study that includes seven languages (Brazilian Portuguese, English, Estonian, French, German, Italian 

and Swedish). The same data collection and analysis procedures were used for all languages. For 

these data, spontaneous speech was elicited in the form of a semi-directed interview (which the 

authors classify under the “spontaneous speech” label) and read speech consisted of sentences taken 

from written transcripts of each participant’s interview and later read by them. Results agree with 

previous findings1: all languages considered, read speech has a statistically significant positive dif-

ference of 0.83 semitones in relation to spontaneous speech. Breaking the results by language, five 

of them repeat the overall result, Portuguese reverses the pattern and there is no statistically sig-

nificant difference in English between the two styles. In regard to standard deviation, no statistically 

significant difference between spontaneous and read speech is found in the seven languages ana-

lyzed separately; collapsing all languages, there is a statistically significant difference of 0.37 

 
1 The authors used ANOVA followed by pairwise tests to investigate differences between groups and speakers. 
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semitones in favor of spontaneous speech. Although there are no significant differences when lan-

guages are considered separately, the values are higher for spontaneous speech in all languages ex-

cept for Estonian and German. The results are in line with previous findings, at least for the effect 

of style on mean f0 value; when it comes to f0 standard deviation, the results are not more definitive 

than previously found, although the significant difference in favor of spontaneous speech observed 

when all language data are collapsed gives an indication that, in larger samples, the small-sized ef-

fects observed may yield significance. 

The second line of research previously mentioned also has a tradition of its own. Its chief pur-

pose is to establish the main statistical characteristics of f0 distributions in general. There are theo-

retical and applied motivations for this line of inquiry. On the theoretical side, one is interested in 

knowing how to best describe and model f0 from a statistical point of view and to relate that to the 

physiology of the voice production mechanism and to linguistic factors that may affect it (FUJISAKI, 

1988). On the applied side, there is the development of normalization strategies (JASSEM; KUDELA-

DOBROGOWSKA, 1980; MAIDMENT; LECUMBERRI, 1996; ROSE, 1987; 1991) that allow the generation 

of f0 contours to abstract away from between-speaker variability and emphasize linguistic-moti-

vated contour movements. 

Another main practical reason for the interest in statistical properties of f0 distributions comes 

from the potential use of f0 as an acoustic parameter in forensic speaker comparison. Eriksson (2011, 

p. 49) mentions that f0 mean and standard deviation are often suggested as “descriptors of individual 

differences”. Surveys of common practices in the field (GOLD; FRENCH, 2011; 2019) recognize that f0 

is widely considered by expert practitioners as being useful in speaker comparison tasks. Despite 

highlighting limitations to the indexical properties of f0, Kinoshita and colleagues (2009) suggest that 

statistical parameters other than f0 mean and standard deviation may be added as features in voice 

comparison procedures in order to make f0 more resistant to within-speaker variability and non-

linguistic factors that may affect it and, in turn, make f0 a more robust factor in forensic speaker 

comparison. The authors make this claim based on the observation that f0 histograms generated 

from audio samples by the same speaker recorded in different occasions “show striking similarities 

in their shapes” (KINOSHITA; ISHIHARA; ROSE, 2009, p. 93). In the cited article, this observation in 

corroborated by presenting a selected number of histogram pairs. There is, however, no mention of 

a systematic study of this behavior to attest its consistency across several speakers. 

Research on the general statistical properties of f0 distributions goes back at least to the 1930s 

(COWAN, 1936) and review papers (FITCH; HOLBROOK, 1970; HOLLIEN; PAUL, 1969; TRAUNMÜL-

LER; ERIKSSON, [S.d.]) list numerous studies with similar goals. Most of these studies try to charac-

terize the f0 distribution by means of f0 mean and f0 standard deviation. A few of them try to correlate 

differences in those estimators with different speaking styles and, in some cases, with speaker sex 

and physical traits such as body height and weight (HOLLIEN; PAUL, 1969). It is much rarer for sta-

tistical descriptors beyond mean and standard deviation to be reported, maybe because it is assumed 

that f0 data can be modeled as a normal distribution and as such could be wholly characterized by 

the distribution mean and standard deviation. Cowan (1936 apud HORII, 1975, p. 197), for instance, 
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states that f0 contours of “stage speech” are “more or less normally distributed”, although no further 

technical details are provided about this statement. More recent studies have not corroborated this 

claim (JASSEM; STEFFEN-BATÓG; CZAJKA, 1973; JASSEM, 1971). The studies reported by the authors 

applied χ2 goodness-of-fit tests to f0 distributions of samples of read speech with about one minute 

in duration. They concluded that about 90% of them differ significantly from a normal distribution 

(the existence of one bimodal distribution is also reported). The authors attribute non-normality to 

deviations in skewness and kurtosis. Measuring skewness by means of Walker’s measure and using 

a table of critical values taken from a collection of statistical tables, they conclude that, in most 

cases, the skewness values in their samples differ significantly from what would be expected for a 

normal distribution. Positive skewness (asymmetry to the left of the central value) is the typical case, 

with some cases of negative or no skewness. Later studies (HORII, 1975; 1982) have corroborated the 

finding that f0 distributions are characterized by positive skewness deviation with reference to the 

normal, both for read and spontaneous speech, although no information is provided about tests per-

formed to identify statistical significance. Positive deviation seems the most common occurrence, 

although evidence of typical negative skewness values is also found (ZEMLIN, 1968 apud HORII, 1975). 

The articles by Jassem and colleagues seem to be the only ones to present systematic data on kur-

tosis. They measure it using Walker’s measure of kurtosis and use a table of critical values to deter-

mine if there is significant deviation from the normal distribution. They find that most distributions 

have a kurtosis value that is larger than the expected: only two in 20 samples, both from the same 

speaker, have non-significant values. 

Given the fact that no deviation in skewness and kurtosis is the exception rather than the rule, 

the authors point out that this “may be helpful in the classification of voices for purposes of identi-

fication” (JASSEM; STEFFEN-BATÓG; CZAJKA, 1973, p. 219). This observation ties in well with the 

suggestions made by Kinoshita and colleagues (2009) mentioned earlier in this section that estima-

tors that contribute to more fine-grained detail in f0 histograms may strengthen its usefulness in 

speaker comparison tasks. 

Evidence of significant deviations in skewness and kurtosis being the typical case in f0 is mostly 

based on data collected in English, with the exception of Mikheev (1971 apud HORII, 1975), which 

reports distributions of fundamental period (the reciprocal of f0) of Russian speech to be positively 

skewed. It would be desirable that a more diverse language pool be studied to claim that this finding 

is truly cross-linguistic. 

At the start, we stated that one of the goals in this article is to bring together the two lines of 

research we described. This is done by reanalyzing a speech corpus that has already been studied by 

Arantes and Linhares (2017) with the purpose of finding evidence for the effect of speaking style on 

f0. In that study, the authors found the effects by looking at differences in a set of measures of central 

tendency and variability of f0. Here we advance the analysis by also looking for differences in skew-

ness and kurtosis.  

Motivated by previous evidence concerning the presence of many cases of bimodality in f0 his-

tograms in the corpus analyzed by Arantes and Linhares (2017), a methodology to identify and analyze 
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such cases is presented in this study. We also go beyond the previous literature on the statistical 

characterization of f0 and perform a distribution fitting analysis including other distributions other 

than the normal. Lastly, we try to model differences due to speaking style as changes in values of the 

distribution that was found to be the best one to model f0 data. 

 

 

1. Material and Methods 
 

In this section we present the speech material analyzed (1.1); the phonetic methods used to extract 

f0 contours (1.2); and the procedures used to analyze the f0 distributions and to fit statistical distri-

butions to f0 data (1.3). In order to conform to open science principles, data files and R scripts used 

to analyze the data are made available at https://osf.io/7ms46/. Praat scripts used for acoustic 

measurements are available at the author’s GitHub profile (https://github.com/parantes). 

 

 

  

The speech material analyzed here is the Brazilian Portuguese subset of a database of recordings 

called “A typology for word stress and speech rhythm based on acoustic and perceptual considera-

tions”,2 designed to study lexical stress in a number of languages. The corpus was designed to elicit 

three different speaking styles: spontaneous speech, read phrases and read words. Spontaneous 

speech was elicited by way of informal semi-directed interviews with participants conducted by a 

native speaker that worked for the project. These recordings were then transcribed and used to 

produce material for the other two speaking styles. Phrases containing suitable target words for 

lexical stress experiments were selected from the interview recordings from stretches of fluent 

speech that had no speech errors. Because of this restriction, the number of selected phrases was 

not uniform for all participants and the total duration of sentence recordings was shorter than in-

terviews. At the next stage, the speakers were called back and asked to read the phrases and words 

they had produced in their spontaneous speech. This way it was possible to obtain identical linguistic 

content in all three speaking styles. Speakers were selected in such a way as to minimize variation 

due to linguistic regional variation and age. All recruited participants spoke a well-defined regional 

standard. In the case of the Brazilian Portuguese branch of the corpus, participants were five female 

and five male university students from cities around the Campinas city region, located to the north-

west of São Paulo state’s capital city. Speaker age variation was the same for all languages within 

narrow margins. Female speakers in the BP sample ranged from 18 to 32 years of age with a mean of 

23; male speakers ranged from 20 to 30 years of age with a mean of 23. 

 
2 See https://wordstress.ling.su.se/ for more information on the goals of the research, a description of data collection procedures 

and demographic information of the participants. The project is headed by Anders Eriksson from Stockholm University, in Sweden. 

https://osf.io/7ms46/
https://github.com/parantes
https://wordstress.ling.su.se/


REVISTA DA ABRALIN 
 
 

 

  

In the first step of the phonetic analysis, audio samples were segmented into units defined as a 

function of speaking style. Interview samples were segmented into phonetic utterances, defined by 

Kendall (2013) as stretches of speech delimited by silent pauses. Each complete sentence sample was 

segmented into individual sentences and each complete word reading sample was segmented into 

individual words. The net duration of all units combined, the number of units and the mean duration 

of units are shown in table 1 for each sample in the corpus. The table also shows frame duration (in 

milliseconds) and the number of voiced frames per audio sample. The reciprocal of frame duration 

indicates the rate at which the f0 extraction algorithm tries to estimate values in the voiced portions 

of the speech sample (more information on f0 extraction procedure ahead). Number of frames per 

sample corresponds to the number of f0 observations taken from each audio sample. 



REVISTA DA ABRALIN 
 
 

 

Speaker Style Duration (s) Units Mean (s) Frame period (ms) Frames Frames 

Female 1 

Interview 365 234 1.56 5.36 42,257 42,257 

Sentences 152 46 3.29 5.36 19,047 19,047 

Words 28.3 42 0.67 5.77 3,480 3,480 

Female 2 

Interview 357 236 1.51 5 3,787 3,787 

Sentences 143 51 2.81 5.77 17,358 17,358 

Words 30.2 45 0.67 6.56 3,672 3,672 

Female 3 

Interview 921 349 2.64 5.36 49,405 49,405 

Sentences 206 43 4.78 5.77 23,895 23,895 

Words 50.7 45 1.13 5.77 6,150 6,150 

Female 4 

Interview 649 239 2,71 6.25 48,804 48,804 

Sentences 184 64 2.88 6.25 18,686 18,686 

Words 49 46 1.06 6.82 5,563 5,563 

Female 5 

Interview 489 272 1.8 5.77 48,162 48,162 

Sentences 148 53 2.8 5.36 17,942 17,942 

Words 38.5 48 0.8 12.5 2,197 2,197 

Male 1 

Interview 671 279 2.41 10.7 21,282 21,282 

Sentences 279 113 2.47 10.7 13,646 13,646 

Words 38.6 45 0.86 10.7 2,130 2,130 

Male 2 

Interview 506 307 1.65 8.33 31,828 31,828 

Sentences 178 87 2.05 7.5 15,273 15,273 

Words 25.8 47 0.55 9.38 1,418 1,418 

Male 3 

Interview 494 277 1.78 8.33 31,996 31,996 

Sentences 202 98 2.06 8.33 13,748 13,748 

Words 29.6 48 0.62 8.33 2,328 2,328 

Male 4 

Interview 569 312 1.82 10.7 32,432 32,432 

Sentences 207 74 2.8 10.7 13,266 13,266 

Words 49.9 60 0.83 10.7 2,417 2,417 

Male 5 Interview 632 235 2.69 8.33 52,777 52,777 
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Sentences 212 70 3.02 9.38 16,649 16,649 

Words 37.6 46 0.82 10.7 2,475 2,475 

 

Mean net duration of participant speech per audio sample (in seconds, standard deviation in 

parentheses) is 565 (166) for interviews, 191 (40.4) for sentence readings and 37.8 (9.42) for word 

readings. Median number of units (median absolute deviation in parentheses) is 274 (54.1) for inter-

views, 67 (26.7) for sentence readings and 46 (1.48) for word readings. Mean unit duration (in seconds, 

SD in parentheses) is 2.06 (0.49) for interviews, 2.9 (0.77) for sentence readings and 0.8 (0.19) for 

word readings. Frame duration (in milliseconds, SD in parentheses) has median values of 6.22 (1.8) 

for the female group and 9.52 (1.22) for the male group. 

Before the f0 extraction phase, stretches of audio files that contained the speech of the experi-

menter, overlap between speaker and experimenter, and non-speech events were silenced to minimize 

f0 extraction errors. Extraction of f0 contours was done with the help of a Praat script (ARANTES, 2019) 

that implements a heuristic suggested by Hirst (2011) to optimize the values passed to the floor and 

ceiling parameters used by Praat’s To Pitch (ac) autocorrelation-based extraction function (BOERSMA, 

1993). The heuristic consists of a two-pass procedure. In the first pass, the Pitch object is extracted 

using default values of 50 and 700 Hz as floor and ceiling estimates. In the second pass, another Pitch 

object is extracted using optimal values for the two parameters, estimated from the voiced samples in 

the first Pitch object. The optimal floor and ceiling values are obtained by the expressions 0.7·q1 and 

1.5·q3, where q1 and q3 are the first and third quartiles of the voiced samples in the first Pitch object. The 

floor value defines the rate at which the algorithm tries to estimate values in the voiced portions of the 

speech sample. The analysis frame period (in seconds) is defined as the result of 0.75 / floor. Table 1 

shows frame period as a function of speaker and speaking style. Mean values (in seconds, SD in paren-

thesis) are 6.22 (1.8) for the female group and 9.52 (1.22) for the male group. 

Each f0 contour obtained through the script was then checked individually and remaining f0 ex-

traction errors were hand-corrected by two analysts trained to perform the task. Most errors com-

monly detected by this procedure were octave halving or doubling and incorrect voicing detection, 

usually in fricatives or transient noise in plosive releases. Cases such as incorrect devoicing of 

frames, which can occur during glottalized or creaky phonation, had to be found by the analyst by 

comparing the f0 contour with both the respective oscillogram and spectrogram. 
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In order to characterize f0 contours in our sample in terms of their statistical properties, a series of 

statistical estimators were calculated for each of them. 

 

• Measures of central tendency: arithmetic mean; 

 

• Measure of dispersion: standard deviation; 

 

• Measure of asymmetry: Pearson's moment coefficient of skewness; 

 

• Measure of kurtosis: Pearson’s kurtosis. 

  

 

All statistical estimators were calculated for values in Hertz and log-Hertz (hereafter referred 

to as logHz)3. Log-transformation was applied to f0 data for two separate reasons. From a purely 

statistical point of view, it is well known that it can reduce the skewness of many types of data and 

help them become more normal-like (LIMPERT; STAHEL; ABBT, 2001). Besides that, log-transfor-

mation can be justified on physiological and linguistic grounds, as pointed by Fujisaki and colleagues 

(FUJISAKI, 1988; FUJISAKI; HIROSE, 1984; FUJISAKI, HIROYA; OHNO; GU, 2004) and explained below. 

Fujisaki advocates for log-transforming f0 values based on the observation that the relation be-

tween f0 and vocal folds elongation can be described linearly if f0 is measured on the log-scale. From 

a linguistic point of view, Fujisaki puts forward the idea that the surface f0 contour of an utterance 

can be conceived as the result of the superposition of two separate components – local and relatively 

fast rise-fall movements, and a global and relatively slow declining baseline. The first of the two 

components roughly corresponds to pitch accents connected to prosodic words and the second 

corresponds to larger units, such as clauses, phrases, or sentences. If the f0 contour is expressed on 

a log scale, it is possible to treat the superposition of both components mathematically as an addition 

operation, simplifying the formulation of a model of the interaction between the accent and phrase 

components, such as Fujisaki's namesake model. The fact that there are two independent laryngeal 

mechanisms to elongate the vocal folds – rotation on the thyroid cartilage around the cricothyroid 

joint, associated with the accent component; and forward translation of thyroid cartilage, associated 

with the phrase component – further justifies treating their combined action as additive in nature.  

D’Agostino test of skewness (D’AGOSTINO, 1970) and Anscombe-Glynn test of kurtosis 

(ANSCOMBE; GLYNN, 1983), available through the moments R package (KOMSTA; NOVOMESTKY, 

2015), were performed to determine if values for each f0 sample in the corpus differ significantly 

from what would be expected for the Gaussian or normal distribution. The normal distribution is 

 
3 The natural (base e) logarithm was used in the transformation. 
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symmetric, meaning that data are about equally distributed around the central value, with skewness 

equals to zero. A sample with negative skewness is said to be left-skewed or left-tailed, meaning that 

the mass of the distribution is concentrated to the right of the center; whereas one with positive 

skewness is said to be right-skewed or right-tailed, meaning that the mass of the distribution is 

concentrated to the left of the center. The normal distribution has a kurtosis value of 3. Kurtosis is 

traditionally presented as a peak feature, describing the shape of the center of a distribution: either 

more flat-topped (platykurtic) or more pointed (leptokurtic) relative to the normal distribution. A 

number of authors (see Westfall (2014) and references therein) argue that the correct interpretation 

of kurtosis is to consider it a measure of the propensity of a distribution to be heavy-tailed, that is, 

to generate extreme values, or values far from the central tendency. 

Given prior experience with the data set we analyze in the present study (ARANTES; ERIKSSON, 

2019; ARANTES; LINHARES, 2017), we knew that there were cases of distributions that showed evi-

dence of bimodality, i.e., histograms with more than one modal value. In order to identify these cases 

in a more objective way, Hartingan’s dip test for unimodality (HARTIGAN; HARTIGAN, 1985) was per-

formed for all sample f0 distributions (both in Hz and logHz) in the corpus – the test yields signifi-

cance when distributions are non-unimodal. Since in bimodal distributions the mean value of the 

overall distribution is likely not to be representative of any of the distributions that can be assumed 

to be mixed together, bimodal cases were identified and treated separately according to the proce-

dures described in section 1.3.2. Unimodal samples were subject to a distribution fitting procedure 

described in the following section. 

An α level of 5% was adopted for all statistical analysis conducted in the present study and they 

were all carried out using the R statistical computing environment (R CORE TEAM, 2020). 

 

 

  

With the aim of establishing which univariate parametric distributions best describe the unimodal f0 

samples in our corpus and whether speaking styles have an effect on this, we used the R package 

called fitdistrplus (DELIGNETTE-MULLER; DUTANG, 2015) to fit six theoretical probability distribu-

tions, listed below. Fitting was carried out on the log-transformed values for the reasons outlined in 

section 1.3.  

Symmetric distributions: 

 

• Normal or Gaussian; 

 

• Logistic. 
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Asymmetric or skewed distributions: 

 

• Burr type XII, also known as Singh–Maddala or generalized log-logistic distribution; 

 

• Gumbel or Generalized Extreme Value distribution Type-I; 

 

• Gamma; 

 

• Weibull. 

 

 

As will be reported in the Results section, most f0 distributions are right-skewed, and for this 

reason we tested more asymmetric than symmetric distributions.  Of the tested distributions, Burr 

type XII is a heavy-tail distribution, meaning that it has “a larger probability of getting very large 

values” (WOLFRAM RESEARCH, 2020). The others are considered thin-tail distributions, meaning 

that “the PDF [probability density function] decreases exponentially for large values” (WOLFRAM 

RESEARCH, 2020) of the variable. Weibull can have both kinds of tails depending on the values of its 

parameters. Distributions included in the fitting analysis were chosen consulting a compendium of 

probability distributions (MCLAUGHLIN, 2016) and considering their availability within R, either as 

part of the base library or add-on libraries. Some of the skewed distributions were available through 

a package called actuar (DUTANG; GOULET; PIGEON, 2008), specialized in actuarial science, as 

heavily skewed distributions are common for that kind of application. 

All six distributions listed above were tested against each f0 sample in our corpus, and the best fit 

was the distribution that yielded the smallest Anderson-Darling goodness-of-fit statistic (abbreviated A2). 

 

 

  

Following the identification of bimodality with the dip test, we did a visual inspection of the histo-

grams that yielded significant p-values to check if the non-unimodality was clearly visible. As it will 

be reported in detail in the Results section, there were a small number of cases that we considered 

to be false positives, that is, the test turned out significant although visual inspection of the histo-

gram did not show more than one obvious mode. Because of that, we decided to visually inspect all 

histograms to check for the occurrence of false negatives, that is, histograms that showed more than 

one mode but were not registered by the statistical test. There were a small number of those as well, 

also reported in section 2.3. Considering the sample of 30 f0 distributions, two cases of false positives 

and three of false negatives were found. In all cases, non-unimodal distributions were bimodal, i.e., 

when more than one mode was detected, only two were present in the histogram. Distributions 

identified as non-unimodal were further analyzed in two ways. First by submitting them to a distri-

bution mixture analysis and then to time-normalization. 
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We now discuss the procedure to identify bimodality. The smoothed histogram shown in figure 

1 shows evidence of two distinct modes, almost one octave apart, suggesting that there is not just 

one source of systematic f0 variability in play, but possibly two. The distribution shown in figure 1 

could be, then, the result of the superposition of two more basic (unimodal) distributions. In situa-

tions like this, a technique called distribution mixture analysis (BISHOP, 2006) can be used to esti-

mate the parameters of the putative underlying distributions. One of the simplest and most tractable 

cases is when component distributions assumed to underlie a given distribution are normal or 

Gaussian and this is referred to as a Gaussian Mixture Model or GMM. In order to carry out a GMM 

analysis, it is necessary to give estimates for the mean, the standard deviation and a parameter called 

λ, which corresponds to the relative weight of each normal distribution in the joint distribution. We 

used the mixtools R package (BENAGLIA et al., 2009) to carry out the analysis. Figure 1 illustrates the 

procedure we used to obtain these values. First, we generated smooth histograms of the distribu-

tions identified as non-unimodal with the help of the kernSmooth R package (WAND, 2015). Peaks in 

the histogram contour (points identified by the solid vertical lines in figure 1) were used to estimate 

the location of the modal values of the component distributions, used as a proxy for their mean 

values. Then, we identified the local minimum between the two peaks and considered that to be a 

rough estimation of the boundary between the two component distributions. Standard deviation 

estimates for the two distributions were calculated by taking the standard deviation of values rang-

ing from the lowest to the boundary values and then the standard deviation of values from the 

boundary to the maximum value in the sample.  In the example shown in figure 1, these two intervals 

correspond to values ranging from the minimum to 5.03 logHz for the component centered around 

4.8 logHz, and from 5.03 logHz to the maximum value for the component centered around 5.4 logHz. 

Given the rough estimates provided by the user, the function normalmixEM from the mixtools pack-

age returns estimates for the three parameters (mean, SD and λ) for the two components, based on 

an expectation maximization (EM) procedure. For the example in figure 1, the values returned by the 

function are 4.74 logHz and 5.38 logHz for the mean, 0.21 logHz and 0.13 logHz for SD, and 0.21 and 

0.79 for λ. All mixture analyses were run on the log-transformed distributions. 
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Word reading was the style that yielded the most cases of bimodal distributions (more details in 

the Results section). In order to better understand what might be driving this behavior, we submitted 

the word reading samples to a time-normalization analysis. Time-normalization allows the compar-

ison on the same temporal scale of the f0 contour applied to different words with the same size and 

repetitions of the same word within word reading samples across different speakers. See Arantes 

(2015) for a more detailed explanation of the time-normalization technique. The interval over which 

time-normalization was done was the duration of each word in word reading samples. Start and end 

points for each word were marked in TextGrid files within Praat. The stress pattern of each word 

was labeled using the symbols “W” for pre- and post-stressed syllables and “S” for stressed syllables, 

such that a word like “trabalho” (work, stressed syllable in bold face) was labeled “WSW”. Time-nor-

malization was done with the help of a Praat script (ARANTES, 2018). A fixed number of 30 equally-

spaced f0 samples were taken from each marked interval. The f0 contour was smoothed (the Band-

width parameter of Praat’s Smooth function was set to 4 Hz) prior to sample collection. Plots of time-

normalized contours as a function of word stress patterns were generated and visually analyzed. 

The main features we looked for in the plots were correlations between downward and upward 

movements and their alignment with the stressed syllable or the initial or final word boundary. 

 

 

2. Results 
  

This section presents descriptive statistics and distribution fitting analysis for unimodal and bimodal 

f0 distributions. As explained in section 1.3, we decided to report unimodal and bimodal cases sepa-

rately, based on the reasoning that values of statistical estimators taken from the overall sample in 
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bimodal distributions are likely not to be representative of any of the distributions that are mixed 

together in the ensemble. 

By applying the procedure described in section 1.3 to identify bimodal distributions, it was pos-

sible to determine that 21 out of the 30 distributions in the study sample are unimodal and are going 

to be analyzed in more detail in sections 2.1 and 2.2. The other nine are bimodal and a complete 

analysis of those distributions is presented in section 2.3.  

To provide the reader with an overview of the variability encountered in our corpus, figure 2 

presents smoothed histograms of all the 30 f0 distributions that make this study’s corpus. The 

smoothed histograms in the figure were generated using the procedure described in 2.3.2 that uses 

kernel density estimates to obtain a continuous density curve out of raw histograms. 
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This section presents descriptive and inferential statistics regarding unimodal f0 distributions. The 

breakdown of the 21 unimodal distributions by speaking style (and speaker sex) is: interview (5 fe-

male, 4 male), sentence reading (5 female, 4 male), and word reading (1 female, 2 male). Values of the 

four statistical estimators mentioned in section 1.3 for each of the 21 unimodal distributions are 

shown in Figures 3 (Hertz scale) and 4 (logHz scale). 
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Summary statistics for the four estimators will be presented below, in both scales, followed by 

statistical comparisons. Since the number of cases in the word reading style is low for both female 

and male speakers, paired t-tests were used to test for a difference between the interview and sen-

tence reading styles. 

 
 Interview Sentences Words 

Female 223 (12.6) 208 (11.3) 207 

Male 140 (29.5) 138 (26.9) 145 (13.1) 

 Interview Sentences Words 

Female 5.39 (0.06) 5.33 (0.06) 5.33 

Male 4.9 (0.12) 4.91 (0.01) 4.95 (0.01) 
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For female speakers, the interview style has a greater mean average f0 in both scales; effect sizes 

are large [Hz: t(4) = 3.84, p = 0.018, d = 1.72; logHz: t(4) = 3.4, p = 0.027, d = 1.52]. No significant 

difference is found for male speakers; effect sizes are negligible [Hz: t(3) = 0.33 ns, d = 0.17; logHz: 

t(3) = -0.55 ns, d = -0.028]. 

 
 Interview Sentences Words 

Female 34.5 (5.38) 18.3 (2.54) 12.1 

Male 28.1 (19.8) 21.7 (7.57) 28.3 (0.36) 

 

 Interview Sentences Words 

Female 0.14 (0.023) 0.087 (0.016) 0.058 

Male 0.17 (0.078) 0.15 (0.03)  0.18 (0.012) 

 

For female speakers, the interview style has greater f0 standard deviation values in both scales; 

effect sizes are large [Hz: t(4) = 5.7 p < 0.005, d = 2.56; logHz: t(4) = 5.6, p < 0.005, d = 2.51]. No 

significant difference is found for male speakers; effect sizes are small [Hz: t(3) = 0.95 ns, d = 0.48; 

logHz: t(3) = 0.76 ns, d = 0.38]. Regarding the effect of speaker sex, different patterns emerge: male 

speakers show no difference between interview and sentence reading in mean and standard devia-

tion; for female speakers, there are significant differences. 

Similar results regarding mean and standard deviation were reported in Arantes and Nascimento 

(2017) for the same BP speech material, although there the authors did not separate unimodal and 

bimodal distributions. Here the analysis is taken further by also looking at skewness and kurtosis. 

Regarding skewness, the test used to detect it turned significant results for all 21 unimodal distribu-

tions, regardless of measurement scale. Skewness is positive for all distributions measured in Hz 

scale and ranges from 0.32 to 2.53. When measured in the log scale, 18 distributions have positive 

values and 3 negative, ranging from -0.22 to 1.40. These findings point to a strong tendency towards 

positive skewness, confirming previous observations found in the literature that f0 distributions tend 

to be right-skewed. Tables 6 and 7 present mean skewness values as a function of speaking style and 

speaker sex in the Hertz and log scales, respectively. As expected, log-transformation has the effect 

of bringing skewness values down, sometimes close to zero, although, even in this case, statistical 

tests for skewness turned out to be significant in all cases. 
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 Interview Sentences Words 

Female 1.61 (0.66) 0.59 (0.23) 0.82 

Male 1.6 (0.23) 1.07 (0.84) 1.04 (0.012) 

 

 Interview Sentences Words 

Female 0.79 (0.48) 0.18 (0.25) 0.64 

Male 0.84 (0.25) 0.36 (0.59) 0.50 (0.19) 

For female speakers, the interview style has greater skewness values in both scales [Hz: t(4) = 5.27, 

p = 0.006, d = 2.36; logHz: t(4) = 5.01, p = 0.007, d = 2.24]. For male speakers the pattern is the same, 

although the difference is not statistically significant [Hz: t(3) = 1.42, ns, d = 0.71; logHz: t(3) = 1.86, ns, d 

= 0.93]. Effect sizes are large for female speakers and moderate and large for male speakers. 

Regarding kurtosis, the statistical test to detect excess kurtosis yielded significant values for all 

distributions, regardless of measurement scale: all values are greater than 3 for f0 values in Hz (range: 

3.15-16.3); for values in logHz, 19 out of 21 values are greater than 3 (range: 2.69-7.13). As with skewness, 

conversion to log-scale lowers excess kurtosis, although not enough to bring it to the level of the nor-

mal distribution. The fact that most samples have kurtosis values that deviate from what would be 

expected were they normally distributed can thus be seen as evidence that f0 distributions are best 

characterized as heavy-tail distributions. The results seen for skewness corroborate this and point to 

the fact that the heaviness tends to concentrate on the left tails, or towards higher f0 values. 

Tables 8 and 9 present mean kurtosis values as a function of speaking style and speaker sex in 

the Hertz and log scale respectively. For female speakers, the interview style has a higher kurtosis 

level than sentence reading; effect sizes are large and moderate for Hz and logHz scales respectively; 

the difference is significant in Hz scale but no on logHz. [Hz: t(4) = 3.09, p = 0.037, d = 1.38; logHz: 

t(4) = 1.54, ns, d = 0.69]. For male speakers, there is no significant effect of speaking style on kurtosis 

levels; effect sizes are negligible [Hz: t(3) = 0.11, ns, d = 0.055; logHz: t(3) = 0.28, ns, d = 0.14]. 

 
 Interview Sentences Words 

Female 8.69 (3.61) 4.60 (0.87) 3.75 

Male 7.78 (2.01) 7.46 (6.09) 4.16 (0.76) 
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 Interview Sentences Words 

Female 5.09 (1.46) 4.26 (0.63) 3.34 

Male 4.60 (1.18) 4.39 (1.72) 3.24 (0.78) 

 

Summing up the results of style effect on distribution parameters, the takeaway is that, for fe-

male speakers, sentence reading has a lower mean level, less variability (SD), less asymmetry (skew-

ness) and less extreme values (kurtosis) compared to the interview style. This is true regardless of 

scale. For male speakers, there is no significant effect of style on any of the parameters, regardless 

of scale. For both sexes, we do not include word reading in the statistical comparisons, because of 

sample size for this style: for female speakers, four out of five word reading distributions are bimodal 

and for male speakers, three out of five. 

 

 

  

In this section we report the results of the distribution fitting procedure described in section 1.3.1. Overall, 

the theoretical distributions that best describe the f0 samples are: Burr 76% (N = 16), Gumbel 14% (N = 3), 

Gamma 5% (N = 1) and Logistic 5% (N = 1). Breaking the results as a function of style, we have: 

 

• Interview: Burr 89% (N = 8), Gumbel 11% (N = 1); 

 

• Sentence reading: Burr 78% (N = 7), Gamma 11% (N = 1), Logistic 11% (N = 1); 

 

• Word list reading: Gumbel 67% (N = 2), Burr 33% (N = 1). 

 

 

First, we can note that asymmetric or skewed distributions are those that best fit f0 data with 

except for one sentence reading sample, for which the Logistic distribution is best. This could be 

expected, given that the results presented in section 2.1 show that, regardless of speaking style, most 

distributions have significant positive skewness and significant excess kurtosis. 

Numerically, Burr type XII distribution is the best fit for interview and sentence reading styles. 

The Gumbel distribution, which is similar to Burr’s in the sense of being right-skewed, gets first 

place in the unimodal cases for two of the word reading style samples. As mentioned in section 1.3.1, 

the best fit was determined by ranking the candidates by their goodness-of-fit values as estimated 

by the Anderson-Darling statistic. Since Burr type XII is so prevalent, we decided to investigate by 

how much it lost the first place in the goodness-of-fit procedure, especially in cases where Gumbel 

was the best candidate, as it is similar to Burr type XII. 
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In all cases where Gumbel is considered the best fit (f1 words, m2 interview and m5 words), Burr 

is a close second: the A2 statistic for Burr being from 1.2 to 2.5 times bigger than Gumbel’s. In the one 

case where the symmetric Logistic distribution is the best fit (m5 sentences), Burr is second with an 

A2 value that is 1.3 times greater than the one for the best fit. In the case where Gamma is the best 

fit (f4 sentences), Normal is the second best (A2 1.3 times bigger), followed by Burr (A2 1.9 times big-

ger). Considering all five samples, the candidates ranked third or lower have an average A2 value that 

is 17.8 times bigger than the best fit, with A2 values ranging from 2 to 107 larger than the best fit. The 

results suggest that even when Burr type XII is not the best fit, it is a close second (or third in one 

single case), even when the best fit is a symmetric distribution. Thus, the data derived from our 

corpus of samples seem to support the proposal that Burr type XII is a reasonable candidate for the 

purpose of modeling most unimodal f0 distributions. 

 

 

  

Burr type XII is a distribution that is defined by three parameters: shape 1, shape 2, and rate, all being 

positive real numbers. Figure 5 shows how the shape of a Burr type XII distribution changes when 

we keep two parameters fixed and change the values of the third (values in the figure were chosen 

in a range plausible for f0 data). As we can see in panel (a), lowering the value of shape 1 makes the 

distribution more right-skewed and heavy-tailed; higher values make the distribution more sym-

metric. Panel (b) shows that shape 2 controls the height of modal density and tail weight; increasing 

the value heightens the modal density and thins the distribution’s tails. Panel (c) shows that the rate 

parameter (or location, the reciprocal of rate) locates the distribution’s center in the x-axis; the 

distribution is translated to the right as rate decreases (or location increases); there is also a small 

degree of widening and modal height decreasing as rate value decreases (or location increases).  
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We used the fitdist function from the R package fitdistrplus (DELIGNETTE-MULLER; DUTANG, 

2015) to estimate the values of the three parameters of the Burr type XII distribution from the 21 

unimodal f0 samples in our corpus. Then, for each of the 21 unimodal f0 contours we correlated the 

estimated values for the three parameters to the statistical descriptors (mean, SD, skewness and 

kurtosis) reviewed in section 2.1. Applying the Pearson product-moment correlation test, we found 

three significant correlations: skewness and shape 1: -0.82 [t(19) = 6.33, p < 0.001]; standard deviation 

and shape 2: -0.64 [t(19) = 3.66, p = 0.002]; mean and rate: -0.97 [t(19) = -16.8, p < 0.001]. These results 

corroborate what can be observed in Figure 5: panel (a) shows that lowering shape 1 value results in 

increased asymmetry in the overall distribution shape and a heavier right tail; also, panel (b) in the 

same figure shows that a lowering in shape 2 value results in a widening of the distribution’s central 

section without a noticeable change in the degree of symmetry; finally, and more obvious, panel (c) 

shows that an increase in mean value causes a decrease in the rate parameter (or increase in loca-

tion). The results show that the Burr type XII distribution does a good job in capturing the influence 

sample standard deviation and skewness have in determining the overall shape of f0 distributions in 

a way that other distributions do not. The role of the sample mean in locating the distribution on 

the x-axis can reasonably be modeled by other distributions as well. There is a significant positive 
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correlation of 0.62 [t(19) = 3.44, p = 0.003] between skewness and kurtosis, although that does not 

translate into a significant correlation between kurtosis and shape 1 [-0.33; t(19) = -1.53, p = 0.14]. 

 

 

  

In order to uncover a possible effect of speaking style on the shape of the f0 data as described by a Burr 

type XII distribution, we calculated the mean values of the three distribution parameters as a function 

of the three speaking styles. Figure 6 shows the probability density functions of the three speaking 

styles for female (panel a) and male speakers (panel b), generated from mean parameter values. 

 

 

 

There is a noticeable effect of style on the distribution shape for female speakers. Modal value 

shifts towards higher values in the following order: word reading < sentence reading < interview. 

Values are 5.3, 5.325 and 5.35 or approximately 204, 205 and 210 Hz, converting the values back to 

the Hertz scale. The most visible change is seen in the wideness of the distribution, following the 

same direction of the shift in modal value. All three distributions are right-skewed. Sentence reading 

and interview have much heavier tails on both sides. These observations corroborate the significant 

differences in standard deviation and skewness presented in section 2.1 for female speakers. No rel-

evant difference in distribution shape motivated by speaking style is seen for male speakers, also 

corroborating the lack of statistical significance in standard deviation and skewness also presented 

in section 2.1. 

It seems unlikely that the lack of effect of speaking style on male speakers could be explained 

on physiological grounds. One possible explanation for the lack of effect in male data could be that 

it is due to the relatively small sample size in each group. Since the effect sizes reported in female 

data were larger than the ones seen in the male data, significant results were likelier to be found in 
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that group even in a small sample.  Future work with larger sample sizes may help understand if the 

sex difference is reliable or an artifact caused by an insufficient sample size.  

The pattern seen in the female data suggests that the interview style generates more asymmet-

ric distributions, with larger f0 excursions and overall greater variability than the other two styles. 

This is compatible with a view that spontaneous or semi-spontaneous speaking styles are livelier, as 

speakers tend to be more engaged and involved in what they are saying than in read speech, that 

has a lesser degree of f0 modulation and therefore could be perceived as having a relatively more 

level intonation pattern. Arantes and Eriksson (2019) present data that may be interpreted as indi-

cation that this is not a fixed pattern, but something that can, at least in part, be language-specific 

or culture-specific. In their study, the authors studied the multilingual corpus that includes the BP 

data analyzed here and developed a methodology to measure similarity between f0 contours. Apply-

ing the methodology to investigate inter-speaker variation in contour similarity, the authors report 

that for a group of languages consisting of English, French, Italian, Brazilian Portuguese and Swedish, 

spontaneous interview was the style which yielded the highest levels of variation. A closer inspection 

of the pairs of contours with the largest dissimilarity index values revealed that most of them in-

cluded rare cases of interview samples with a more level f0 profile. The few atypical interview con-

tours, then, generated most of the inter-speaker variation. For Estonian and German, on the other 

hand, sentence reading was the style yielding more inter-speaker variation. The crucial difference, 

though, was that most sentence reading contours showed a good deal of f0 modulation and extended 

ranges and the pairs with the largest dissimilarity values included, in most cases, the few atypical 

cases of sentence reading contours with less modulation and narrower ranges. One conclusion that 

could be drawn from the results is that speaking styles differ in terms of f0 variation, but language 

communities may vary in terms of which style has a more lively profile, with larger excursions and 

overall more modulation, and which ones show a more level profile. 

Going back to the results in the present study, it seems that male speakers adhere to the pattern 

show in Arantes and Eriksson (2019) to a lesser extent than the female speakers. It is possible to see 

that, for the sentence reading style, males and females present similar SD and skewness values. For the 

interview style, on the other hand, female speakers show an increase in SD and skewness that is not 

present to the same degree in the male sample (cf. tables 5 and 7). This could result in the impression 

that females sound livelier or more expressive than males in the interview style, although this hypoth-

esis should be confirmed by future experiments. If it is shown that female spontaneous contours are 

reliably perceived as livelier than male’s contours, that may be a sociophonetic effect that results from 

the different expectations regarding the behavior of females and males in social interactions. 

The coarse-grained dynamics revealed by the distinct statistical characteristics of spontaneous 

and read speech in the female group is illustrated in figure 7. It shows stretches of two contours 

taken from the central 20 seconds of speaker f1 interview sample (green dots) and speaker f2 sen-

tence reading sample (blue dots).  The interview distribution has skewness and kurtosis values of 1.4 

and 7.1, respectively, while the sentence distribution has skewness and kurtosis values of -0.04 and 

4.4, respectively. As expected, the phonetic effects of these differences are: much wider f0 excursions 
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and an expanded f0 range in the case of the highly positive-skewed green contour and the lack of 

extreme f0 excursions and a more symmetrical variation around the median f0 value in the blue con-

tour. Follow-up studies should look in more detail how the differences play out in the small scale of 

individual sentences.   

 

 

 
 

  

In this section we present the results of the analysis that was carried out on bimodal distributions 

as described in section 1.3.2. First, we review the effect of speaking style and speaker sex on the 

occurrence of f0 bimodality. Then we present the results of the Gaussian Mixture Models analysis. 

Last, we apply time-normalization to a set of f0 contours to better understand what might be moti-

vating the emergence of bimodality. 
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Hartigan’s dip test turned out significant p-values for eight samples. As noted in section 1.3.2, in 

order to avoid false positives, we visually inspected the histograms of these eight distributions and 

decided that two of them presented no sign of a second prominent mode and reclassified them as 

unimodal cases. To also avoid false negatives, histograms of the distributions that did not yield sig-

nificant results in the dip test were visually inspected. In doing so, we identified three cases where 

there was evidence for bimodality. The net result is that a fair number of f0 distributions are not 

unimodal: nine out of the 30 distributions, or 30% of the sample, according to the procedures de-

scribed in section 1.3 and irrespective of scale (Hz or logHz). Speaking style has a major effect on this 

distribution: almost 78% of those occurrences (7 out of 9) correspond to the word reading style – 

the other two are from the sentence reading and the interview sample of the same male speaker 

(labeled m3). Out of all word reading samples (10), 70% are bimodal. Both sexes are roughly as likely 

to generate bimodal f0 distributions: four out of five female speakers did it, all of them in the word 

reading style; among male speakers, four out of five also did it, three when reading words, and one 

when reading sentences and in the interview. 

 

 

  

As noted in the Material and Methods section, all distributions classified as non-unimodal are bi-

modal, i.e., there are two prominent peaks in their histograms. The values obtained by the GMM 

analysis for the three parameters (mean, standard deviation and λ) that characterize the two com-

ponent distributions present in each of the nine bimodal samples in the corpus are shown in Figure 

7 as a function of speaker sex. 
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In terms of the mean values of the two component distributions, the mean difference is 0.36 

logHz for the female speakers and 0.41 logHz for the male speakers, indicating that the lower com-

ponent distribution is centered around values that are around 50% below the center of the distri-

bution with a higher mean value. For 4 out of the 9 samples (2 females and 2 males), the lower com-

ponent mean is 70% to 90% below the higher component mean, suggesting that at least part of this 

lower distribution can be in the non-modal voicing register. 

There is a negative correlation of -0.74 for the difference between the second and first compo-

nents’ mean and the λ of the first component distribution, meaning that the further apart the means 

of the two components are, the less the lower component contributes to the overall distribution. 

The histogram in figure 1 is an example of this pattern: the mean of the first component’s distribution 

is located at a point almost one octave below the mean of the second component’s distribution and 

it accounts for around 20% of the overall distribution. 

The variation coefficients of the mean parameter estimated by the GMM analysis of the two 

components are 1.72% and 2.13% for the female speakers and 1.56% and 2.94% for the male speakers. 

The component with the lower mean also tends to have a lower standard deviation and this pattern 

tends to be slightly stronger for the male speakers. 
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Time-normalized contours of all words in word reading style for three speakers, m4, f5 and f1, are 

shown in figures 9, 10 and 11. They were chosen because they illustrate three different patterns, 

detailed below. 

 

 
 

 

Speaker m4’s overall f0 distribution is bimodal, but the mean value of the two component distri-

butions is not far apart (4.62 and 4.95 logHz, approximately half octave apart) and both account more 

or less equally for the overall distribution (53% and 47%). The range spanned by word contours is 

around 1.2 octaves. Blue dashed lines indicate the locations of the mean values of the two component 

distributions. A visual examination of the contours indicate that the two means approximately coin-

cide with the rises and falls of the contours and that there is a balance in terms of the contribution 

of rises and falls to each word contour. 
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Speaker f5’s overall f0 distribution is bimodal, but the component distributions’ means are lo-

cated farther apart (4.74 and 5.38 logHz, approximately 0.9 octave) and the lower mean component 

distribution accounts for approximately 21% of the overall f0 distribution. The range spanned by the 

word contours is around 1.8 octaves. Blue dashed lines indicate the location of the two component 

distributions’ means. For this speaker, we can see that the overall median is very close to the mean 

of one of the component distributions. The other component has a lower mean value that is at the 

same level of most falls in the word contours; most falls reach deeper levels when compared to 

speaker m4 and the contour stays there for less time; this could explain why the lower component 

distribution contributes less to the overall f0 distribution. 
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As a comparison, speaker f1 overall f0 distribution has a unimodal histogram and it is apparent 

from the word contours in figure 10 that there is not a great deal of intonation modulation – word 

contours span around 0.3 octave. 

In terms of contour dynamics, word reading seems to be characterized by a good amount of f0 

movement in a relatively short time interval – mean word duration is 800 ms (SD 186) all speakers 

polled; see the mean word duration as a function of speaker in table 1.  

In a language like BP, in which word stress is not fixed and there can be lexical contrasts defined 

by stress position within a word, the patterns observed seem to suggest that speakers tend to single 

out the stressed syllable against the background of unstressed syllables by aligning an upward or 

downward f0 movement with it. 

In general terms, the time-compressed nature of the contours in isolated word reading seems 

to be what causes the bimodality in f0 histograms: contour rises contribute to an f0 distribution with 

a relatively higher mean value and contour falls generate a distribution with a lower mean value; the 

ensemble distribution that results, then, is bimodal. 
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3. Discussion and conclusions 
 

Taken as a whole, the results presented here corroborate tendencies already suggested in the pre-

vious literature about speaking styles with the added effort to be as explicit and complete as possible 

in the description of the phonetic and statistics analysis procedures to ensure an adequate level of 

reproducibility. Besides contributing to a well-established stream of previous studies on speaking 

styles, we also introduced something new by going a step further in the statistical modeling of f0 

distributions by trying a distribution fitting analysis that included a number of theoretical probability 

distributions other than the Normal or Gaussian. 

We will start the general discussion by presenting the most important findings regarding the 

effect of speaking style on the shape of f0 distributions. First, word reading style strongly favors the 

emergence of bimodal distributions regardless of speaker sex. In contrast, the other two styles sel-

dom generate bimodal distributions. The mixture analysis shows that the two components that make 

up the bimodal distribution can be either closer or farther apart. When they are farther apart, the 

lower component is usually low enough that it is consistent with being in the non-modal register. 

Visual inspection of time-normalized f0 contours coming from bimodal distribution cases suggests 

that the two components in the mixture can be associated with the time-compressed instantiation 

of intonational rises and falls that are linked with the signaling of stressed syllables. Recognizing the 

existence of a nontrivial amount of bimodal f0 distributions, its prevalence in a particular speaking 

style and giving it a proper treatment is a new approach in the literature. Previous mentions to bi-

modality are limited to: (1) Jassem (1971), which reports the occurrence of one case of bimodal dis-

tribution (1 out of 10 speakers); Jassem et al. (1973, p. 215, fig. 3.4), which shows histograms of two f0 

samples by the same speaker that suggest bimodality; and (2) Kinoshita et al. (2010, p. 50), which 

states that “bimodal distribution was found to be very common due to creaky phonation” in a corpus 

comprised by samples of 201 speakers, although no quantification of its prevalence is provided or an 

objective procedure to detect bimodality is described. Kinoshita and colleagues (2010) attribute bi-

modality to creak phonation and the histogram presented in figure 1 in their paper seems to support 

this hypothesis - the lower of the two peaks is low enough to be compatible with non-modal pho-

nation. In our data, a number of the cases could be attributed to non-modal phonation as well for 

the same reason: one of the peaks is located in the very low range of f0. In other cases, bimodality 

seems to arise from the fact that the typical contours in isolated word reading are characterized by 

lower and higher levels and brief transitions between them. Because of the time-compressed nature 

of the contours, the transition is so brief that the two peaks in the histogram are associated with the 

lower and higher levels with only a few data points between these levels. In some cases, the lower 

level is in non-modal phonation territory, but not in all of them. Regarding the occurrence of non-

modal phonation in the corpus, we refer the reader to Silveira and Arantes (2017). In that study, the 

authors report the results of an auditory analysis of non-modal phonation occurrences in the same 

corpus analyzed here. The authors conducted auditory analysis of stretches of very low f0 regions in 

contours with bimodal histograms and found that most instances of very low f0 resulted in the 
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perception of non-modal phonation, although there was no attempt to quantify this association. This 

finding corroborates the frequent observation made in the voice quality literature that lowered f0 

levels are usually associated with the perception of laryngealized phonation (EDMONDSON; ESLING, 

2006; ESLING; HARRIS, 2005; GORDON; LADEFOGED, 2001; HANSON; CHUANG, 2001; LAVER, 1980; 

REDI; SHATTUCK-HUFNAGEL, 2001). 

Results concerning the effects caused by sentence reading and interview styles presented here 

indicate they are not uniform among male and female speakers. Female speakers show significant 

differences between styles: interview tends to have higher mean, standard deviation, skewness and 

kurtosis than sentence reading. Differences are statistically significant with large effect sizes for all 

estimators, except for kurtosis in log-scale (non-significant, moderate effect size). Male speakers 

show differences in the same direction (interview > sentence reading) for all four statistical estima-

tors, although none of them is statistically significant. Effect sizes are smaller than the ones observed 

for female speakers for mean, standard deviation and kurtosis, but moderate for skewness. The pre-

sent results are in line with what was reported by Arantes and Nascimento (2017) for the same data. 

In the earlier study, the difference in mean value in favor of the interview style in comparison to the 

reading style is greater in female speakers (1 semitone) than in male speakers (0.15 st), although no 

significant test is reported. For standard deviation, previous results showed that males present 

greater values than females (3 st vs. 2 st) irrespective of style; in terms of styles, interview presents 

a greater value than reading (2.92 st vs. 2.1 st), but values as a function of both sex and style are not 

presented. The results of the present study also show this tendency of male speakers to have larger 

standard deviation values than female speakers in both styles. Considering the results in the per-

spective of the broader literature on speaking style, they seem to confirm that, while for the majority 

of other languages studied read speech style presents larger f0 mean and standard deviation than 

read speech, the opposite is the case for Brazilian Portuguese. 

Now we turn our attention to the statistical characterization of f0 distributions. The statistical 

tests reported in section 2.1 show that most distributions have skewness and kurtosis values that sig-

nificantly deviate from what would be expected from normally distributed samples, regardless of meas-

urement scale. The current results corroborate what the scarce previous literature (HORII, 1975; 1982; 

JASSEM; STEFFEN-BATÓG; CZAJKA, 1973; JASSEM, 1971) has reported: regardless of speaker sex or 

speaking style, f0 distributions tend to have positive skewness and kurtosis values above 3. These re-

sults point to the fact that these distributions are asymmetric and heavy-tailed, strongly hinting that 

the normal distribution is not the best theoretical statistical distribution to model empirical f0 distri-

butions. Eriksson (ERIKSSON, 2011, p. 49–50) offers one possible explanation for why positive skewness 

arises in f0 data: “positive skewing occurs primarily because there is much more room for fundamental 

frequency variation upwards that downwards”. Downward movement range is limited, according to 

this explanation, because going lower than a certain threshold “will normally result in creak which 

speakers tend to avoid” (id., p. 57), whereas “there is, in principle, no corresponding upper limit, how-

ever, resulting in a distribution bias towards higher frequencies” (ibid., p. 57). 
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Given the empirical results on statistical estimators of f0 variability and possible explanations 

for this behavior, there is a clear gap in the literature. Until now, the available studies (JASSEM; 

STEFFEN-BATÓG; CZAJKA, 1973) only demonstrate that empirical f0 data deviate significantly from 

normal distributions. No previous study that we are aware of tried to go beyond that and test the 

fitness of other theoretical distributions to f0 data. The results of the distribution fitting analysis 

reported in section 2.2 try to fill this gap. As expected, none of the distributions in our corpus can 

be adequately modeled by a normal distribution. Even in the one case of an empirical distribution 

that was best modeled by a symmetric distribution, this distribution was the Logistic, not the normal. 

For all other 95% of unimodal empirical f0 distributions, the best fit were right-skewed theoretical 

distributions, especially Burr type XII, a three-parameter heavy-tailed distribution, and in second 

place a two-parameter thin-tailed distribution called Gumbel. Both are used to model real-world 

phenomena such as survival data, insurance losses and income distribution that are characterized 

by the presence of events with extreme deviations from a central value. Given Eriksson’s (2011) ac-

count of why f0 data has pervasive positive skewness, one could associate the presence of relatively 

unbounded upwards excursions as a source of extreme values. The results presented in section 2.2.1 

provide evidence that the three Burr distribution parameters estimated from the empirical f0 distri-

butions have a good amount of correlation with the empirical distribution’s mean, standard deviation 

and skewness (and kurtosis indirectly, given its significant positive correlation with skewness). This 

result shows that the Burr distribution does a good job of capturing important information provided 

by three (four, indirectly) estimators that define the shape of a unimodal f0 distribution. 

Bringing together both the speaking style and the distribution fitting themes, section 2.2.2 

shows that the effect of speaking styles on the shape of f0 distributions can be represented by dif-

ferent combinations of the three Burr distribution parameters. The probability density plots in figure 

6 generated from the parameter combinations for female and male speakers and the three styles 

show that they are able to represent the lack of a significant style effect in male speakers and ade-

quately capture the larger effects seen in the female speakers, especially the fact that the interview 

style has greater mean, standard deviation and skewness than the sentence reading style. This result 

gives additional evidence for the usefulness of the Burr distribution to model the effect of a relevant 

paralinguistic phenomenon on the shape of f0 distributions. 

The results concerning the application of the so called “extreme value” probability distributions 

to f0 data are encouraging since they are able to capture important features documented in empirical 

f0 samples. Burr type XII stands out as the distribution that best fits the data in the speech material 

analyzed here. Future work should improve the present results by enlarging the number of speakers 

and including other languages as well to test if language has an effect on what distribution comes 

out as the best fit. Further suggestions for future studies include exploring how assuming that f0 

data follows an underlying distribution such as Burr type XII can be useful both in explaining lin-

guistic phenomena (as we did here with speaking styles) and in practical applications such as speaker 

comparison in forensic contexts. In the latter case, we suggest checking if the distribution parame-

ters are useful at capturing possible invariant features in f0 distributions coming from the same 
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speaker in non-contemporaneous recordings such as those that Kinoshita and colleagues (2009; 

2010) noted in unsystematic observations. Follow-up studies with a larger number of participants 

could test if individual speakers can be identified in a big pool on the basis of the values of the pa-

rameters that describe their f0 distribution following the methodology used by Kinoshita and col-

leagues. A larger number of speakers can help estimate the degree of between-speaker variation in 

these parameters. These studies should also obtain the distribution parameter values for different 

speech samples by the same speaker to estimate the within-speaker variability. If the between-

speaker variability is larger than within-speaker variability, then the parameter values are useful in 

speaker comparison tasks (NOLAN, 1993; ROSE, 2002). 

A final suggestion for future work is to explore ways of adequately modeling bimodal f0 distri-

butions. Here we used Gaussian mixture models to analyze the data as a first approximation, but, 

given the evidence against f0 being normally distributed, other mixture possibilities should be ex-

plored. Two important questions to be answered are whether the individual component distributions 

in bimodal cases have the same statistical characteristics as unimodal ones and whether the two 

underlying component distributions in bimodal cases of the same type, especially in the case where 

one of them is mostly comprised of creaky phonation. 

On the whole, the results reported in this article show how speaking styles have an important 

role in shaping the overall shape of f0 distributions. The patterns observed suggest a robust tendency 

for word list reading to generate bimodal distributions. Read sentences and the interview style are 

associated with unimodal but right-skewed distributions. The distribution fitting analysis corrobo-

rates previous suggestions in the literature that the normal distribution is not the best theoretical 

distribution to model f0 distributions. We report results of an initial analysis showing that Burr type 

XII, an extreme value distribution, is the best statistical distribution to model empirical right-skewed 

f0 distributions. 
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